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Abstract Detecting computer worms is a highly chal-

lenging task. We present a new approach that uses artificial

neural networks (ANN) to detect the presence of computer

worms based on measurements of computer behavior. We

compare ANN to three other classification methods and

show the advantages of ANN for detection of known

worms. We then proceed to evaluate ANN’s ability to

detect the presence of an unknown worm. As the mea-

surement of a large number of system features may require

significant computational resources, we evaluate three

feature selection techniques. We show that, using only five

features, one can detect an unknown worm with an average

accuracy of 90%. We use a causal index analysis of our

trained ANN to identify rules that explain the relationships

between the selected features and the identity of each

worm. Finally, we discuss the possible application of our

approach to host-based intrusion detection systems.

Keywords Artificial neural networks �Worm detection �
HIDS � Feature selection

1 Introduction

Modern society’s increasing reliance on information and

communication technology underscores the importance of

coping with malicious software (malware) attacks. A single

malware program in a single computer connected to a

larger network can result in the loss, unauthorized utiliza-

tion, or modification of large amounts of data and cause

users to question the reliability of all of the information on

the network.

The detection of malware transmitted over computer

networks has been substantially researched over the past

several years [1–4]. The term malware refers to various

types of programs, such as executables or scripts that contain

code that has a malicious purpose. One type of malware is a

worm that actively propagates through communication

protocols, in many cases by exploiting vulnerabilities in the

operating system [5]. Other types of malware are viruses that

inject their code into innocent executables files and are

activated whenever those infected files are executed. Unlike

worms, viruses require user intervention to propagate. Other

recently disseminated malware programs include Trojans,

which are computer programs that have a useful function-

ality, but also have some hidden, malicious goal, and

backdoors, which enable remote access and control with the

aim of gaining full or partial access to the infected system.

Today, known malware programs are mainly detected

and removed by antiviruses that search the executables for

known patterns, also called signatures. For common anti-

virus software, the detection of an unknown malicious

executable is extremely difficult. In the case of worms, a
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new signature is created by the antivirus system company

only after the appearance of the new worm, and the anti-

virus signature base is then updated. However, since worms

spread rapidly, the signature update action is often taken

too late, after the worm has already had an opportunity to

cause expensive damage [6, 7].

In this study, a different approach is proposed. The

detection of the presence of malware in a computer host is

effected by analyzing the overall computer behavior. We

define the behavior according to a variety of different

features that can be measured in the computer during its

operation. We then apply a trained artificial neural network

(ANN) model to detect the appearance of malware based

on the values of the measured features. We apply ANN by

using the semi-supervised approach, which employs a

supervised training method and unsupervised detection

method. To facilitate the detection of unknown malware

based on the generalization of the behavior of known

malwares, we propose training supervised ANNs using

known malwares, and then extracting the binary patterns of

the resulting hidden neurons outputs and using them for

classification as in the typical AA-ANN. When a new

malware is presented to the trained AA-ANN, it will gen-

erate a new binary pattern describing the behavior of the

new malware. Such an approach enables us to detect and

classify the behavior of malwares that were not included in

the training set. In this study, we focus on detection of

computer worms.

Rapid detection of worm infections is of critical

importance. The main advantages of ANN are its high level

of efficiency in real-time operations, low consumption of

CPU resources during the classification phase, and its

ability to generalize, which is important for detecting any

previously unseen worm behaviors. For these reasons, we

propose employing ANN models for the detection of worm

activity in real time. Such an approach may result in a host-

based intrusion detection system (HIDS) based on the

analysis of computer behavior.

It would be natural to compare the results of our

approach to the existing anti-virus systems. However, it is

not suitable in our case, since antiviruses, which commonly

are signature-based methods, cannot detect an unknown

worm for which a signature is not available. Thus, such a

comparison is irrelevant. In this paper, we compare the

detection capabilities of our approach to the detection

capabilities of three different classification methods, deci-

sion trees (DT), k-nearest neighbors (kNN) and support

vector machines (SVM), to detect five real, recently created

worms. We regard the capabilities of these alternative

classification methods as a base line. In an earlier study, we

showed that the detection of new and known worms using

ANN techniques is feasible and effective [8]. However,

since continuous monitoring of a large number of measured

features may be very demanding in terms of computational

resources, we reduce the number of features significantly

by using various feature selection techniques, while

maintaining, and even increasing, the detection accuracy.

In addition, we use the causal indices (CI) technique to

estimate the influence of each input feature on the classi-

fication of each worm [9].

The rest of this paper is structured as follows. In Sect. 2,

we present work related to this study. In Sect. 3, we

describe the classification methods that we used. In Sect. 4,

we describe the feature selection methods that we used

during the study. In Sect. 5, we describe the worms that

were used to create the dataset illustrated in Sect. 6. Sec-

tion 7 includes a review of the evaluation measures

employed in this study. Section 8 presents the evaluation of

the results of the new approach. In Sect. 9, we summarize

the study and conclude.

2 Related work

2.1 Malicious software

The term malware commonly refers to pieces of code, not

necessarily executable files, which are intended to cause

harm, in general or to a particular host owner. Malicious

codes are classified into four main categories: worms,

viruses, Trojans and a new, rapidly growing category

which includes remote access Trojans, and backdoors.

While the aim of the approach suggested in this study is to

develop the ability to detect activities of any new and

unknown malware, our initial research target was worms,

and in this section we will focus on them.

In a recent report [5], worms were defined in terms of

how they differ from other types of malware. (1) Malicious

code—worms are considered malicious in nature. There are

no good worms that break into systems to repair their

vulnerabilities; when a mobile code is used for a legitimate

purpose, it is called an agent, (2) network propagation is

also a commonly agreed-upon characteristic. Worms

propagate actively over networks, while other types of

malicious code, such as viruses, commonly require more

human intervention, (3) degree of human intervention,

which refers to the amount of user activity required to

propagate a malware program. Some sort of human inter-

vention is typically required for a worm’s propagation, (4)

stand-alone or file-infecting—while viruses infect host

files, a worm does not necessarily require a host file. Some

worms, such as the Code Red [10] worm, do not even

require an executable file, residing entirely in the memory.

Another report focusing on worms [11] examined peo-

ple’s motivations in developing worms. According to this

study, motives include: (a) experimental curiosity, such as
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that which led to the development of the ILoveYou [12]

worm, which was based on a student’s thesis project pro-

posal; (b) feelings of pride and power that can lead

programmers to show off their knowledge and skill through

the harm caused by their worm; and (c) commercial

advantage, extortion and criminal gain, random and polit-

ical protest, terrorism, and cyber-warfare. Worms are very

good vehicles for propagating code for different purposes.

The existence of all of these types of motivation makes it

clear that computer worms are here to stay. Meaningful

knowledge can be gained from existing, identified worms

and applied to generic security systems. A very important

characteristic of worms is their active propagation through

networks. Unlike the vulnerability being exploited or the

payload type, which may vary between worms, this char-

acteristic is shared by all worms and should be considered

in efforts to detect unknown worm activity.

2.2 Detecting malicious software using data mining

techniques

A recent study of intrusion detection [1] summarized the

recently proposed applications of data mining for recog-

nizing malware in single computers and computer

networks. Lee et al. [13] proposed a framework of data-

mining algorithms for the extraction of unusual instances

of user behavior for use in anomaly detection, in which

normal behaviors are learned and any abnormal activity is

considered suspect. The authors suggested several tech-

niques, such as classification, meta-learning, association

rules, and frequency of episodes, for the extraction of

knowledge for further implementation in intrusion detec-

tion systems. They tested their approach on the DARPA98

[14] benchmark test collection, which is a standard network

data set for intrusion detection research.

A Naı̈ve Bayesian classifier was mentioned in [1] with

reference to its implementation in the ADAM system

developed by Barbara et al. [2]. The ADAM system has

three main parts: (a) a tool that monitors network data by

listening to TCP/IP protocol; (b) a data-mining engine that

enables the acquisition of the association rules from the

network data; and (c) a classification module that classifies

the nature of the traffic into two possible classes, normal

and abnormal, that can later be linked to specific attacks.

Other proposed machine learning algorithm techniques are

ANN [3, 15, 16], self organizing maps (SOM) [17] and

fuzzy logic [4, 18, 19].

The techniques used to detect intrusions or the presence

of malware include analysis of the executable files on local

storage devices [20], analysis of the content of the packets

sent or received by the computer [21], and examination of

the system calls invoked by processes running on the

system [22]. Apap et al. [23] proposed using Windows

registry access records to monitor malicious code anoma-

lies. Mukkamala and Sung [24] used ANN and SVM on the

DARPA98 data set in order to classify intrusions based on

network communication measurements.

All the approaches described above tend to focus on a

specific type of data that can be measured in the computer.

Our approach is not limited to a specific type of measured

data, but instead collects data by measuring as many fea-

tures as possible and lets the classification or feature

selection method define an optimal subset of features. Our

experiments show that such a subset generally contains

different types of feature from different families.

2.3 Network and host-based intrusion detection

systems

Intrusion detection systems (IDS) aim to detect unwanted

manipulation of a machine’s user or a computer network,

such as attacks against vulnerable services on the network,

unauthorized access to user files, attacks on applications,

etc. There are several major types of IDS. One of them,

network-based intrusion detection system (NIDS), detects

intrusions by monitoring network traffic and multiple hosts

which are considered part of the network [25, 26]. Another

type of IDS is a protocol-based intrusion detection system

(PIDS), which is installed at the front end of a server, in

order to listen to the traffic in a specific protocol (e.g.,

HTTPS for HTTP servers).

Our study is related to HIDS [15, 27–29]. HIDS are

installed in the end user computers (hosts) and monitor the

dynamic measures (features) on these computers, generally

referred to collectively as system state, according to which

the HIDS decides whether the state of the computer is

acceptable or an intrusion alert should be declared. HIDS

are used alongside NIDS, in order to detect malware which

has slipped through the NIDS. The combination of NIDS

and HIDS is commonly called a Hybrid IDS. One example

of a Hybrid IDS is the famous Prelude IDS.1

In their 1999 paper on intrusion detection systems,

Debar et al. [30] defined the taxonomy of these systems and

reviewed several algorithms for learning to identify an

intrusion. They recognized the inherent advantages of

using ANN modeling for this task, but they qualified their

support by their apparent inability to explain its reasoning,

and criticized ANN modeling for being ‘‘computationally

intensive.’’ In this paper, we show that the ANN training

and analysis tools we use are capable of overcoming these

two limitations. The ANN model training is not computa-

tion intensive, as it is done off-line, and the result is not a

‘‘black-box’’ device.

1 http://www.prelude-ids.org/.
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3 Classification methods

In this section, we review the four classification methods

used in this study to detect the presence of a worm based on

various parameters that were measured in the infected

computers.

3.1 Artificial neural networks

3.1.1 General description

An ANN is an information-processing paradigm that is

inspired by the way biological nervous systems, such as the

brain, process information. A general description of this

paradigm can be found in [31, 32]. The main advantages of

ANN are its ability to find patterns in highly non-linear

problems and its very fast classification time.

Supervised learning and classification procedures, in

which each output unit is told what its desired response to

input signals ought to be, have trouble detecting new

classes, or, as in our case, an unknown worm. One way to

overcome this limitation is to utilize the hidden neurons’

rounded outputs as cluster signatures. Thus, each cluster

has a binary pattern associated with it.

These binary patterns have been used successfully to

form clusters in various ANN applications [33]. Typically,

they are formed by using Auto-Associative ANN (AA-

ANN). AA-ANN systems learn with no external teacher

in situations in which the feature vector is presented both as

the input and the output. This is also referred to as self-

organization, in the sense that the AA-ANN self-organizes

the data presented to the network and detects collective

properties of the dataset.

Although the main criterion that makes it hard to train

AA-ANN, and a regular ANN in general, is the number of

hidden neurons; a large number of output neurons may also

make the training process difficult. In order to overcome

this problem we propose using a semi-supervised approach.

Thus, to make the detection of unknown worms based on

the generalization of the behavior of known worms possi-

ble, we propose training supervised ANNs using known

worms, and then extracting the binary patterns of the

resulting hidden neuron outputs and using them for clas-

sification as in the typical AA-ANN. When a new worm is

presented to the trained AA-ANN, it will generate a new

binary pattern describing the behavior of the new worm. If

the binary pattern of the new worm was not unique, the

behavior of this worm would also be similar to that of a

known worm (or worms). As long as this pattern is not

identical to one of the binary patterns resulting from nor-

mal computer operational behaviors, there will be no false

negative errors. This method is described in the next

subsection.

For our experiments, we used the Levenberg–Marquardt

ANN training method [34]. This method is considered to be

one of the best algorithms for training ANN, and is avail-

able as part of the MATLAB� neural network toolbox [35].

As it uses second-order derivatives, it may require expen-

sive computation resources, but as the training is done off-

line, the computing power of a modern, high-speed PC is

sufficient for this task. Once trained, the ANN is capable of

processing data very quickly and can be used for real-time

worm detection.

3.1.2 Classification by clustering

After training ANN in a supervised way, it is possible to

classify a specific sample by analyzing the outputs of the

hidden neurons instead of the outputs of the output neu-

rons. Such an approach is useful because it enables us to

determine the ability of an ANN to identify an unknown

worm as an unknown type.

For each sample propagated through the trained net-

work, the outputs of hidden neurons are measured and

rounded in order to obtain a binary pattern. After the

propagation of all of the samples, each sample has its own

binary pattern that represents the cluster to which the

sample belongs. Now, it is possible to build a cluster

matrix that represents the obtained clusters. Each row in

this matrix represents a cluster and each column represents

a known class. Cells in each row represent the number of

samples in the cluster that belong to a specific class. The

class of each cluster is defined by the label of the majority

of samples in the cluster. The samples from other classes

that ended up in this cluster are considered to be incorrectly

classified. The calculation of various evaluation measures,

such as accuracy, from the cluster matrix is described in

Sect. 7.

3.2 Decision trees

The DT method is a good choice when the data-mining task

involves classification or prediction of outcomes and the

goal is the generation of rules that can be easily understood

and explained. The DT labels and records data points and

assigns them to discrete classes. DT can also provide a

measure of confidence that the classification is correct. A

DT model is built through a process known as binary

recursive partitioning. This is an iterative process of

splitting the data into partitions, and then splitting them

further on each of the branches to achieve homogeneous

subsets.

The J48 method used in our experiment is a Java

implementation of the C4.5 DT algorithm introduced by

Quinlan [36]. The advantages of the DT are its short

training and classification times and the fact that simple
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rules can be extracted from the tree after the training

process. The disadvantage is that typical DT cannot be

applied to detect new types of worms.

3.3 k-nearest neighbors

In the kNN method, the training dataset is used explicitly to

classify each sample of a test dataset. When evaluating a

new example, the algorithm looks for those existing

examples that are most similar to the new one. Similarity

may be based on feature values (Euclidean distance) or on

some different similarity measure; k defines the number of

similar examples for which the algorithm is searching. The

label of the majority of the examples found in a group of k

most similar examples is given to a new example [37].

Clearly, the computing time increases with the value of

k, but the advantage of higher k values is that they provide

smoothing that reduces the vulnerability to noise in the

training data. In practical applications, k is typically in

units or tens rather than in hundreds or thousands. One of

the main disadvantages of kNN is its very long classifica-

tion time. This disadvantage makes it unsuitable for real-

time applications.

3.4 Support vector machines

Support vector machines (SVM) were developed in 1995

by Vapnik and his colleagues at AT&T laboratories [38].

This technique was originally developed for linear, binary

classification with margin, where margin stands for the

minimal distance between the class-separating hyperplane

and the closest data point. The general SVM seeks an

optimal separating hyperplane that maximizes the margin.

An interesting and important feature of the SVM approach

is that the solution, which is the separating hyperplane, is

based only on the data points that are at the margin. These

points are called support vectors.

The simple, linear SVM can be extended to a non-linear

one when the data of the problem are transformed into a

feature space using a set of non-linear functions [38]. In the

feature space, even with very high dimensionality, the data

points can be separated linearly. One of the important

advantages of the SVM is that it does not require this kind

of transformation or the calculation of the separating

hyperplane in the potentially high dimensional feature

space. Instead, a kernel representation can be used, in

which the solution is written as a weighted sum of the

values of a certain kernel function evaluated at the support

vectors. Typical SVM algorithms have two disadvantages.

The first is that it may be difficult to explain the obtained

model. The second is that SVM algorithms require an

important parameter-tuning stage in order to give the

desired degree of accuracy.

4 Feature selection methods

There are two different approaches to feature selection: the

wrapper approach and the filter approach [39]. The wrap-

per approach searches for the optimal subset of features of

a given dataset for a specific classification algorithm. The

main drawback of this approach is its relatively long

computation time. The filter approach ranks the features

according to a certain measure that is independent of any

classification algorithm. Thus, after the calculation of the

ranks, one can use any subset of features based on their

ranks. We used three different filter techniques. These

techniques are described in the following subsections.

4.1 Hidden neurons’ relative variance

The hidden neurons’ relative variance (HNRV) knowledge

extraction and dimensionality reduction technique involves

ranking the inputs (features) according to their relevance to

the prediction accuracy of the ANN [40]. This technique is

based on the observation that, in a trained ANN model, a less

relevant input contributes a smaller proportion of the vari-

ance in the activities of the hidden layer neurons. This may

be the result of either the small relative variance of the input

feature values or the small final connection weights of all

hidden neurons assigned to this input by the trained ANN.

The contribution of an input i to the total variance of the

hidden layer inputs is presented in (1). (WH)i
T is the ith row

of the transpose of WH (i.e., the ith column of the input-to-

hidden connection weights expressed as a row vector). R is

the covariance matrix for the network inputs x, estimated

from the training set.

ðVIÞi ¼ ðWHÞTi WHRT
i ð1Þ

The relative contribution of an input i to the variance of

the hidden layer inputs is calculated using (2), where j is

the index of each of the n hidden neurons.

ðVIÞrel
i ¼

ðVIÞiPn
j¼1 ðVIÞj

ð2Þ

4.2 Fisher’s score ranking

Fisher’s score-ranking technique is used to calculate the

difference, described in terms of mean and standard devi-

ation, between positive and negative examples relative to a

certain feature [41]. Equation (3) defines the Fisher score,

in which Ri is the rank of feature i, which describes the

proportions of the substitution of the mean (l) of the fea-

ture i values in the positive examples (p), the negative

examples (n) and the sum of their standard deviations (r).

A larger Ri value implies a larger and more significant

difference between the values of the positive and negative

Neural Comput & Applic (2009) 18:663–674 667
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examples relative to feature i; thus, a feature with a larger R

value is more important for separating the positive and

negative examples.

Ri ¼
li;p � li;n

�
�

�
�

ri;p þ ri;n
ð3Þ

4.3 Gain ratio filter

The gain ratio (GR) measure is based on the information

gain (IG) measure, which is found by measuring the rela-

tive entropy reduction [37]. This method requires prior

discretization of the continuous data. Equation (4) defines

the classic entropy measure, in which S is the entire dataset,

C is the class attribute, and Sc is the subset of S in which the

value of C is c.

EðSÞ ¼
X

c2C

� Scj j
Sj j log2

Scj j
Sj j ð4Þ

Equation (5) defines the IG rank. IG describes how

much information we gain by splitting the dataset relative

to attribute A. In this equation, V(A) is the set of unique

values of attribute A and Sv is the subset of S in which the

value of attribute A is v.

IGðS;AÞ ¼ EðSÞ �
X

v2VðAÞ

Svj j
Sj j EðSvÞ ð5Þ

The disadvantage of the IG method is that it assigns

higher ranks to attributes with large numbers of unique

values [i.e., high V(A) values]. The GR method overcomes

this bias by using an extra term which represents the way

an attribute splits the data. Equation (6) defines this special

term and (7) defines the GR rankings.

SIðS;AÞ ¼ �
X

v2VðAÞ

Svj j
Sj j log2

Svj j
Sj j ð6Þ

GRðS;AÞ ¼ IGðS;AÞ
SIðS;AÞ ð7Þ

If the value of SI(S,A) is zero, then the value of GR(S,A)

is equal to the value of IG(S,A).

4.4 Causal indices analysis

Causal index (CI) analysis [42] enables the identification of

the relationships between specific inputs and outputs of an

ANN model through quasi-qualitative analysis of the

trained ANN connection weights. It can be used to identify

the effect of the specific computer system measure on the

identification of a known worm, thereby providing infor-

mation about its effects on the host computer behavior.

This new knowledge will be useful for detecting new

worms, as many new worms are variants of existing ones.

The CI is calculated as the sum of the product of all

pathways between each input and each output. Equa-

tion (8) presents the basic formula of the CI from input i to

output k, where wij is the connection weight from input i to

the hidden neuron j and wjk is the connection weight from

hidden neuron j to output k. The product of these weights is

computed for all n hidden neurons. The CI describes the

influence direction (positive or negative) and the relative

magnitude of the relationship of any input to any output.

CIik ¼
Xn

j¼1

wijwjk ð8Þ

5 The worms used to create the data sets

Worms differ in their behaviors and internal structures. For

our experiments, we selected subjects that are representa-

tive of different types of worm. This allowed us to analyze

the abilities of the different classification methods to find

similar patterns in different types of worm representing

different groups of worms with potentially different

behavioral patterns. We briefly describe here the main

characteristics of each of the worms used in this study. The

descriptions are based on virus library information avail-

able on the Web.2,3

W32.Dabber.A This worm randomly scans IP addresses.

It uses the FTP server opened by W32.Sasser.D worm in

order to upload itself onto the victim computer. Thus, it is a

self-carried worm. The worm adds itself to the registry, so

that it will be executed the next time the user logs in. Thus,

this worm uses a human activity-based activation strategy.

The worm contains a backdoor as a payload, which listens

in on a predefined port. If the port is in use, it scans other

ports until it finds an unused port that it can exploit. This

worm is distinguished from the others by the role of a

second worm in its propagation.

W32.Deborm.Y This is a self-carried worm that uses

local address optimization while scanning the IP addresses.

Using a sophisticated procedure, it scans only those IP

addresses that are local, relative to the base IP address. This

worm registers itself as an MS Windows service and adds

itself to the registry, so that it will be executed when the

next user logs in. Thus, it uses a human activity-based

activation strategy. This worm carries a payload containing

three Trojans, Backdoor.Sdbot, Backdoor.Litmus and

Trojan.KillAV, and executes all of them. We chose to

include this worm in our study because of the way it

chooses IP addresses, and its heavy payload.

2 Symantec threat explorer: http://www.symantec.com/enterprise/

security_response/threatexplorer.
3 Kaspersky virus list:http://www.viruslist.com/.
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W32.Korgo.X This worm uses a totally random method

for scanning IP addresses. It takes advantage of the MS

Windows LSASS buffer vulnerability in order to connect to

the infected computer and download itself, making it a self-

carried worm. The worm tries to inject a function into MS

Internet Explorer as a new thread. If successful, all the

worm’s subsequent actions will appear to be performed by

Internet Explorer. If not, the worm will continue to run as a

stand-alone process. Thus, this worm is classified as a self-

activated worm. The worm contains a payload code to

connect to predefined websites in order to receive orders or

download newer worm versions. The feature that makes the

detection of this worm interesting is its self-activation.

W32.Sasser.D This worm uses local address optimization

while scanning the network for victim computers. While

W32.Slackor.A scans only local addresses, this worm scans

the local addresses half of the time and totally random

addresses the other half of the time. This worm opens 128

threads for scanning the IP addresses, which has a heavy

impact on a computer’s CPU usage and generates significant

network traffic. This worm exploits the same vulnerability

that the W32.Korgo.X worm exploits, but in a different way.

It uses a shell to connect to the infected computer’s FTP

server and upload itself, which makes it a self-carried worm.

This worm adds itself to the registry, so that it will be run the

next time the user logs in. Thus, it uses a human activity-

based activation method. This worm contains no additional

payload. Its uniqueness lies in its use of a relatively high

number of threads to scan the IP addresses.

W32.Slackor.A This worm uses local address optimiza-

tion while scanning a network for vulnerable computers. It

determines the victim computer’s IP address and scans the

addresses that have the same first two bytes. The worm uses

MS Windows IPC’s designated position on the infected

computer in order to propagate; thus, it is a self-carried

worm. The worm adds itself to the registry, so that it will be

run automatically after the next login; thus, it uses a human

activity-based activation strategy. This worm contains a

payload in the form of a Trojan that it executes. This Trojan

opens an IRC server on the victim computer, so that a

hacker can connect and control the Trojan with simple IRC

client software. The fact that this worm opens an IRC server

on the infected computer distinguishes it from other worms

and makes its detection particularly interesting.

W32.HLLW.Doomjuice.B This worm randomly gener-

ates IP addresses and attempts to propagate to other

computers through the backdoor opened by the worm

W32.Mydoom.A@mm. It tries to connect to other com-

puters using a specific TCP port and, if a connection is

established, it uses the backdoor to infect the new com-

puter. It is programmed to add itself to the registry, so that

it will be loaded upon start-up. This worm runs a contin-

uous denial of service (DoS) attack on the Microsoft

website (microsoft.com). The fact that it runs a DoS attack

makes its detection particularly interesting.

W32.HLLW.Raleka.H This worm uses local address

optimization while scanning the network for vulnerable

computers. It takes over the computer by exploiting the

Microsoft DCOM RPC vulnerability. It opens a random TCP

port for remote connections and may also receive commands

from its chat site. This worm opens a chat server on the

computer, and this makes its detection interesting.

6 Description of data sets

Since no public standard dataset was available for this study,

we had to create our own dataset. We created a computer

network environment consisting of a variety of computers.

The computer network environment consisted of seven

computers containing heterogenic hardware and a server

simulating the Internet. We injected worms into the network

environment, and then monitored various computer features

in each of the infected and uninfected computers.

We used the MS Windows performance tool4, which

enables the monitoring of system features that appear in these

main categories: internet control message protocol (ICMP),

internet protocol (IP), memory, network interface, physical

disk, processes, processor, system, transport control protocol

(TCP), threads and user datagram protocol (UDP). We also

used VTrace [43], a software tool which can be installed on a

PC running Windows. VTrace collects traces of the file

system, the network, the disk drive, processes, threads, inter-

process communication, writable objects, cursor changes,

windows, and the keyboard. The Windows performance tool

was configured to measure the features every second and

store them as vectors in a log file. VTrace stored time-

stamped events, which were collected in a second file.

In our preliminary study [8], we used only the Windows

performance tool, which provided us with a dataset con-

sisting of 68 features. For that study, we built the datasets in

the absence of any user activity. We will refer to this dataset

as ds1. While creating ds1, each worm was injected sepa-

rately into a clean computer and the features were gathered

from the computer during that time. In addition, there was a

time period during which no worms were activated. In the

rest of the paper, we will refer to the state of the computers

during this period as ‘‘clean.’’ The worms used in ds1 were:

Deborm.Y, DoomJuice.B, Padobot.KorgoX, Raleka.H and

Sasser.C.

4 http://www.microsoft.com/resources/documentation/windows/xp/

all/proddocs/en-s/sag_mpmonperf_02a.mspx.

Neural Comput & Applic (2009) 18:663–674 669

123

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-s/sag_mpmonperf_02a.mspx
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-s/sag_mpmonperf_02a.mspx


www.manaraa.com

In our next study [9], we employed the VTrace tool, as

well. Thus, we generated two files, one using the Windows

performance tool and the other using the VTrace tool. Both

files were merged to generate a vector of 323 features for

every second. We will refer to this dataset as ds2. During

the creation of ds2, each worm was injected separately into

a clean computer for 20 min. As in ds1, the features were

also gathered for a clean-state during the same period of

time. The samples in both datasets contained multi-class

labels, identifying each worm and the clean state.

In the case of ds2, we considered three major aspects:

computer hardware configuration, constant background

application, which demands high computational resources,

and user activity, in order to perform the evaluation in a

realistic environment:

a. Computer hardware configuration: both computers

operated using MS Windows XP, since we considered

it to be the most commonly used operating system. The

two configurations we considered were old, using a PC

based on Pentium III 800 MHz CPU, bus speed

133 MHz and memory 512 Mb, and new, using a PC

based on Pentium IV 3 GHz CPU, bus speed 800 MHz

and a memory of 1 GB.

b. Background application activity: there were two

options, with background application activity and

without. We ran the WEKA mathematical processing

application software [44] which mainly affected the

following features: Processor Time (usage of 100%),

Page Faults/sec, Average Disk Bytes/Transfer, Aver-

age Disk Bytes/Write, and Disk Writes/sec.

c. User activity: the two options here are the presence and

absence of user activity. The detailed description of

user activity can be found in Table 1. In each time

period, all the user operations were performed

simultaneously.

Thus, we had two options for each one of the three

aspects, resulting in a total of eight possible subsets (each

subset is a combination of three aspects). All eight subsets

were combined into one dataset, which we named ds2.

During the creation of ds2, we were forced to replace the

worms Raleka.H and DoomJuice.B with Dabber.A and

Slackor.A worms, as the heavy CPU usage of these worms

made any user activity impossible.

7 Evaluation measures

7.1 General evaluation measures

In order to compare the described methods, we employed

the commonly used evaluation measures: true positive rate

(TP), shown in (9), false positive rate (FP), shown in (10),

and accuracy, shown in Eq. (11). TPN is the number of

positive examples classified correctly. TNN is the number

of negative examples classified correctly. FNN is the

number of positive examples misclassified. FPN is the

number of negative examples misclassified.

TP ¼ TPN=ðTPN þ FNNÞ ð9Þ

FP ¼ FPN=ðFPN þ TNNÞ ð10Þ

accuracy ¼ TPN þ TNN

TPN þ TNN þ FPN þ FNN ð11Þ

Additionally, we plotted receiver operating

characteristic (ROC) curves in order to evaluate the

different methods. An ROC curve is a graphical

representation of the trade-off between the true positive

and false positive rates for every possible cut-off value.

That is, the ROC curve is the representation of the trade-

offs between sensitivity and specificity.

7.2 Calculating the evaluation measures

from the cluster matrix

It is possible to calculate accuracies and TP from the

clustering matrix described in Sect. 3.1 for each of

the classes using (12) and (13). In these equations, M is the

cluster matrix, l is the index of the class whose accuracy or

TP we want to calculate, and r(i) is the ith index (of k total)

of the cluster in which class l is dominant (r is the group of

all such indices).

accuracyðlÞ

¼
Pk

i¼1 MrðiÞ;l þ
P

i¼ff1::ng=rg
P

j¼f1::l�1;lþ1::ngMi; j
Pn

i¼1

Pn
j¼1 Mi; j

ð12Þ

TPðlÞ ¼
Xk

i¼1
MrðiÞ;l

.Xn

i¼1
Mi;l ð13Þ

Table 1 User activity schedule

Time period (min) User operations

0–5 Opening ten instances of MS Word

Downloading two files simultaneously

5–10 Opening five instances of MS Excel

Generating random numbers in MS Excel

Downloading one file

Listening to Internet radio

10–15 Opening 12 instances of MS Word

Downloading one file

15–20 Opening nine instances of MS Excel

Generating random numbers in MS Excel

Browsing the Internet (using MS I.E)
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8 Evaluating the new approach

8.1 Experimental plan

We performed two major experiments. The purpose of the

first experiment, which we refer to as ex1, was to compare

the detection abilities of our approach with the detection

abilities of the base line classification methods. For this

experiment, we used ds1. Since the number of samples was

large (151,200), we used only 1% of randomly (uniformly)

chosen instances as the training set. The rest of the dataset

was used as the test set. We performed multiple classifi-

cations of known worms using our approach and the base

line classifiers: kNN, DT, and SVM.

The purpose of the second experiment, ex2, was to

investigate the capabilities of our approach in detecting

unknown worms and to determine the best feature selection

technique for this task. For this experiment, we used ds2.

As stated above, the purpose of this experiment was to

evaluate different feature selection techniques for the

detection of an unknown worm using ANN modeling. First,

we ranked the features according to each feature selection

method. Then, for each feature selection method, we used

the top 5, top 10, top 20, top 30, top 50, and full set of

features as inputs to the ANN model. For comparison, we

used the principal component analysis (PCA) algorithm to

generate a composite input to the ANN, taking the most

significant principal components for use as features. Thus,

we had 4 9 5=20 different datasets, in addition to the full

dataset, resulting in a total of 21 datasets. For each of these

datasets, we performed five classification runs, one run for

each worm. During each run, we designated one of the

worms as the unknown worm and built the following

training and test sets. For the training set, we took 10% of

randomly chosen instances, excluding the instances of the

worm we chose and also excluding 20% of the clean

instances. For the test set for each worm, we took the

instances of the chosen worm and the 20% of the clean

instances that were excluded from the training set.

8.2 Experimental results

Table 2 contains the results of ex1. Each cell describes the

error rate of each one of the four classification methods

evaluated in ds1 and the elapsed time, which includes the

training time for the dataset and the test time (training time/

test time). All the error rates are related to the test set only.

While the DT method outperformed the other techniques,

with a 0.03% error rate, the ANN had an average error rate of

only 0.04%. ANN showed the best results for detection of the

clean state. That is, it had the lowest false positive rate.

We continued the experiments with the ANN method,

since this was the only method that could identify a new

worm in a multi-class detection mode and it had the best

speed in the classification phase (as can be seen in the last

row of Table 2), thus making its application in HIDS

feasible.

Table 3 summarizes the results of ex2. This table con-

tains the results of the unknown worm classification

performed using the feature selection techniques applied to

ds2. The values in the cells are the detection accuracy

averages of five different experiments, one for each miss-

ing worm.

The results presented in Table 3 suggest that the Fish-

er’s score method outperformed the other techniques.

Surprisingly, the maximum accuracy was achieved by

using only five of the attributes selected by the Fisher’s

score method. The average accuracy of unknown worm

detection using these attributes was 0.90. These five attri-

butes are presented in Table 4. They are related to memory

management and the number of system context switches.

In order to analyze the differences between different

feature selection techniques, we calculated the averaged

ROC curves for each of them. First, the ROC curve was

calculated for each experiment. Then, the values of the

ROC curve were averaged for each feature selection

technique. The averaged ROC curves are presented in

Fig. 1.

The separation level for the GR technique was signifi-

cantly lower than those of the other three techniques.

However, the separation levels of the HNRV technique and

Fisher’s score technique were very close to the separation

level of PCA. The areas under the ROC curves are pre-

sented in Table 5. Despite the fact that Fisher’s score was

the most accurate feature selection method, the HNRV

method achieved the best separation level. For this reason,

the HNRV feature selection method may be more suitable

for typical HIDS applications.

CI values were calculated from the ANN model that

used the five best features, as selected using the Fisher’s

score method, as inputs. The results are presented in

Table 6, in which CIs higher than 5 are marked in bold and

Table 2 Summary of error rates for ds1

Class ANN kNN DT SVM

Deborm.Y 0.00% 0.20% 0.02% 0.15%

DoomJuice.B 0.00% 0.09% 0.07% 0.00%

Padobot.KorgoX 0.08% 0.02% 0.00% 0.02%

Raleka.H 0.08% 0.18% 0.00% 0.02%

Sasser.C 0.10% 0.02% 0.02% 0.05%

Clean 0.01% 0.18% 0.08% 0.17%

Average 0.04% 0.11% 0.03% 0.07%

Elapsed time

train/classify

86 min/0.1 s 3 s/4 h 9 s/0.3 s 20 s/2 s
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defined as high, and those lower than -5 are marked in

italics and defined as low. If a certain CI is positive with a

relatively high magnitude, then the related input influences

the related output in the same direction. That is, if the input

is high, the output will also be high. Alternatively, if the CI

is negative with a relatively high magnitude, then the

related input influences the related output in the opposite

direction. That is, if the input is high, the output will be

relatively low.

From the CI data presented in Table 6, the following

rules can be formulated:

• If feature 2 is high and features 3, 4, 5 are low, then

Clean

• If features 2, 3 and 4 are high and feature 1 is low, then

DabberA

• If feature 2 is high and features 1, 3, 4, 5 are low, then

SasserC

• If features 1, 2, 3 and 4 are low, then DabormYT
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Attribute no. Attribute name Fisher’s score

1 PerfMemoryPoolPagedAllocs 23.80

2 PerfMemoryCacheBytes 17.09

3 ThreadTotalContextSwitches/sec 15.24

4 SystemContextSwitches/sec 14.54

5 PerfMemorySystemDriverTotal 13.66
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Fig. 1 Averaged ROC curves for four different feature selection

techniques

Table 5 The areas under the ROC curves

HNRV Fisher’s score Gain ratio PCA

0.90 0.86 0.77 0.86
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• If features 1 and 5 are high and feature 2 is low, then

Padobot

• If feature 2 is low and features 1, 3, 4, 5 are average,

then SlackorA

9 Summary and discussion

In this paper, we presented a new approach based on ANN

for analyzing computer behavior data and detecting the

presence of computer worms. The advantages of our

approach over the other three methods are its ability to

classify correctly a worm not used in the training, very good

detection of new behavior of a known worm, and its short

classification time. In addition, we presented our evaluation

of three different feature selection techniques for selecting

computer behavior features that can be used for detecting

the presence of worms. We showed that the accuracy of

worm detection may increase when the detection process

uses only the most important features. We presented the five

most important attributes and used the CI method to derive

different rules related to these features from the trained

ANN. We show that the Fisher’s score, despite its sim-

plicity, appears to be a good feature selection method for

computer behavior data. This selection method demon-

strated the maximum accuracy and the lowest standard

deviation when only the top five features were used.

The capabilities of the modern ANN training algo-

rithms, coupled with the increased speed of today’s

computers, have reduced the time needed for off-line

training. The resulting ANN models can be used on-line, as

their execution speed is compatible with HIDS needs. The

process of measuring features, however, may still consume

a significant amount of the host’s overall computing power.

For this reason, there is an advantage in identifying the

optimal set of sample features to be used as inputs to the

ANN model.

Using ANN models in HIDS detection procedures allows

the possibility of easy, periodic updating. New suspected

intrusion attempts, initially identified by the AA-ANN as

causing abnormal behavior, can be added to the original

training data as either new normal behavior or new known

threats. The re-training is quick, uses the existing ANN

connection weights as a starting point and can be done on-

line when needed.

For future work, we propose the evaluation of this

approach for detection of additional types of malware, such

as viruses and Trojans.
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